

অতিরিক্ত সংখ্যা

কর্তৃপক্ষ কর্তৃক প্রকাশিত

সোমবার, আগস্ট ১৬, ২০২১

গণপ্রজাতন্ত্রী বাংলাদেশ সরকার পরিকল্পনা কমিশন ভৌত অবকাঠামো বিভাগ সড়ক পরিবহন উইং

প্রজ্ঞাপন

তারিখ : ০৭ জুলাই ২০২১

নং ২০.০৩.০০০০.৭০২.১৪.৫১৪.১৯-১১০—একই শ্রেণীর সড়ক পুনঃনির্মাণ, নতুন নির্মাণ, প্রশন্তকরণ ও মজবুতিকরণের ক্ষেত্রে সংস্থা ভেদে সড়কের ডিজাইন, কাজের মান এবং ব্যয়ের বিদ্যমান তারতম্য পরিহারের লক্ষ্যে জেলা, উপজেলা ও ইউনিয়ন সড়ক, সেতু ও কালভার্টসমূহের মান (Standards) ও ব্যয় নির্ধারণ করে সরকার কর্তৃক "Road Design Standards" অনুমোদনপূর্বক ০৫ সেন্টেম্বর ২০০৪ তারিখে গেজেটে প্রকাশ করা হয়।

২। উক্ত গেজেট অনুসরণে সড়ক ও জনপথ অধিদপ্তর (সওজ) এবং স্থানীয় সরকার প্রকৌশল অধিদপ্তর (এলজিইডি) স্ব-স্ব সংস্থার নীতিমালা অনুযায়ী তাদের আওতাধীন সড়ক নির্মাণ, পুনঃনির্মাণ, প্রশন্তকরণ ও মজবুতিকরণ কার্যক্রম পরিচালনা করছে।

৩। বর্তমানে এলজিইডি'র আওতাধীন সড়কসমূহে যানবাহনের সংখ্যা এবং এক্সেল লোড পূর্বের তুলনায় বৃদ্ধি পাওয়ায় এলজিইডি'র আওতাধীন সড়কের বিদ্যমান রোড ডিজাইন হালনাগাদপূর্বক সরকার "Road Design Standards of LGED" অনুমোদন করেছে। এতদ্বারা অনুমোদিত "Road Design Standards of LGED" এলজিইডি কর্তৃক অনুসরণের জন্য জনম্বার্থে জারী করা হলো।

৪। অনুমোদিত "Road Design Standards of LGED" ০৫ সেপ্টেম্বর ২০০৪ তারিখে জারীকৃত "Road Design Standards" এর সাথে "এলজিইডি'র জন্য প্রযোজ্য" মর্মে সংযোজিত হবে।

৫। ইহা গেজেটে প্রকাশের তারিখ হতে কার্যকর বলে গণ্য হবে।

রাষ্ট্রপতির আদেশক্রমে

মীর্জা মোহাম্মদ আলী রেজা উপপ্রধান (উপসচিব)।

1 Introduction

- 1.1 Road transportation plays a vital role in providing accessibility and mobility that contributes to the socio-economic development of a country. Bangladesh has around 3,75,000 km road network comprising National highway, Regional highway, Zila road, Upazila road, Union road, and Village road. The latter three category rural roads are developed and maintained by the Local Government Engineering Department (LGED). For the design purpose, LGED generally follows the road design standards gazette published on 5 September 2004.
- 1.2 Bangladesh's economy has made remarkable progress and economic activities have increased manifold in the last decade. Both the number and axle load of the traffic on roads have increased significantly. In some areas, Union and/or Village roads experience more axle load than Upazila roads because of rapid industrialization. Besides, due to the impact of global climate change, the variation of rainfall pattern and temperature over the years are now prominent and natural calamities like flash floods, tidal surges are more frequent in Bangladesh. In this backdrop, to support and accelerate the development pace, the upgrading of rural road design standards has been indispensable.
- 1.3 In order to upgrade the existing design standards of rural roads, LGED engaged the Bureau of Research, Testing and Consultation (BRTC) of Bangladesh University of Engineering & Technology (BUET). The composition of the BRTC, BUET team has been listed in Appendix-A. The team reviewed the existing manual, visited topographically and geographically dissimilar areas of the country, collected traffic data, measured soil's bearing capacity, conducted necessary tests, and finally after detail technical analysis submitted the upgraded standards. Subsequently, upon request of LGED, the upgraded standards were reviewed by an International Expert, Dr. John Rolt from Transport Research Laboratory (TRL), UK who is one of the writers of Overseas Road Note 31, a globally used guideline for designing roads in tropical and sub-tropical areas. Moreover, under the National Resilience Programme, the United Nations Office for Project Services (UNOPS) reviewed the standards through resilience perspective and their recommendations have been addressed accordingly.

The report on upgraded standards were placed to the Physical 1.4 Infrastructure Division of Planning Commission through the Local Government Division under the Ministry of Local Government, Rural Development & Cooperatives (LGRD&C) for gazette notification. The standards were discussed in the Committee for Classification, Ownership, Responsibility Fixation, and Dispute Resolution of Roads under the Physical Infrastructure Division of the Planning Commission (list of committee members has been mentioned in Appendix - B). The committee conducted three meetings in this regard. Besides, the Hon'ble Minister of LGRD&C also chaired two meetings in this connection and reviewed the standards. After incorporating the decisions of different meetings, the standards were placed in the Road Design Standards Committee (list of committee members and ToR have been mentioned in Appendix - C) for recommending for gazette notification.

2 Summary of Issues Covered

- 2.1 The committee overviewed the design standards for new construction of all types of rural roads namely Village Road, Union Road, & Upazila Roads, and concluded that the key design criteria for all roads will be based on traffic volume, axle loads, and CBR (California Bearing Ratio) of subgrade.
- 2.2 It was agreed to consider fourteen design templates to form a logical progression in terms of road width and pavement thickness based on traffic and soil considerations. The agreed design standards will guide LGED in selecting the appropriate design of new roads following the traffic and soil data.
- 2.3 In addition to the fourteen templates, the committee recommended LGED for customized designing of roads on a case by case basis when feasible or situation demands.

3 Glossary

A list of technical terminology used in the standards has been listed alphabetically in Appendix - D with their definitions.

4 Principle of Design Standards

- 4.1 The existing design standards were limited to a few templates considering small variations in the Commercial Vehicles per Day (CVD) and soil's bearing capacity i.e. sub-grade CBR.
- 4.2 To overcome the limitations of the existing standards and to cover all possible scenarios, the geometric and structural design of rural roads has been suggested based on the traffic volume, axle load, subgrade CBR, environment & climate change scenario.
- 4.3 The extent of the road damage caused by vehicles depends on their axle loads. The damaging intensity of axles is related to a standard axle of 8.2 tons using equivalence factors derived from empirical studies. Due to the change in traffic patterns throughout the country, the equivalence factors for different axle loads have been changed from the previous standard as mentioned in Appendix E. The loads imposed by private cars are not significant for structural damage and therefore only the total number and axle loading of heavy vehicles that the road will experience during the design period have been considered for structural design.

5 Geometric Design

5.1 The geometric dimensions of roads shall be sufficient enough to carry all traffic (vehicles and pedestrians) efficiently and safely. The suggested combination of carriageway widths of LGED road pavement and PCU factors for LGED road vehicles are summarized in Appendix - F. To simplify the selection of road carriageway, surveys were performed in many locations of the country and established the best possible approximation of PCU/hr and CVD.

Design Type	Corresponding CVD	Carriage Way	Crest
Type-8	0-50	3m / 10ft	5.5m / 18ft
Type-7	51-100	3.7m / 12ft	5.5m / 18ft
Type-6	101-200	3.7m / 12ft	7.3m / 24ft
Type-5	201-300	5.5m / 18ft	7.3m / 24ft
Type-4	301-600	5.5m / 18ft	9.7m / 32ft

5.2 The existing and recommended geometric dimensions of roads have been mentioned in the following Table 1 and Table 2 respectively.

Table 1: Existing Geometric Dimensions

Design Type	Corresponding CVD	Carriage Way	Crest
Type-8	0-50	3m / 10ft	5.5m / 18ft
Type 7	51-100	3.7m / 12ft	6.7m / 22ft
Type 6	101-200	5m / 16ft	8.7m / 28.5ft
Type-5	201-300	5.5m / 18ft	9.2m / 30ft
Type-4B	301-400	6.1m / 20ft	11m / 36ft
Type-4A	401-500	6.1m / 20 ft	11m / 36ft
Type-4S-B	501-750	6.7m / 22ft	9.7m / 32ft
Type-4S-A	751-1000	7.3m / 24ft	11m / 36ft

The existing standards suggested design Type- 7 & 8 for Union road and Type- 4, 5, & 6 for Upazila road.

Table 2: Recommended Geometric Dimensions

- 5.3 CVD shall be the main criterion for the selection of geometric dimensions of roads. If the CVD of any category road is found higher than its corresponding CVD, then the geometric dimensions mentioned against that CVD will govern. For instance, if any village road's CVD is more than 50 but less than 101, then its carriageway will be 12 ft instead of 10 ft. However, it is anticipated that in most of the cases design Type- 8 will be applicable for the Village roads, design Type- 7 & 8 will be applicable for the Union roads, and design Type- 4A, 4B, 5 & 6 will be applicable for the Upazila roads. Design type 4S-A & 4S-B will be applicable for roads in heavy traffic areas i.e. CVD>500. For the hilly area, six (6) types of design templates have been recommended that will be selected based on the CVD values of roads. The roads with traffic volumes where CVD>1000 will be designed on a case-by-case basis.
- 5.4 In case of special and/or unavoidable situations, e.g. unavailability of land, site criticality, etc., LGED will take case-specific decisions regarding carriageway, shoulder, and other dimensions.

5.5 LGED shall take necessary actions to acquire the required land lawfully to ensure the geometric standards of roads. The roads will have sufficient sight distance and the number of curves per kilometer will be as low as possible. Adequate land shall be acquired to provide necessary widening at the curve, intersection, and, wherever needed from the safety and level of service point of view. Nevertheless, in general, efforts will be made to keep land acquisition as minimum as possible.

6 Pavement Designs

- 6.1 The pavement is the main element of a road and therefore, careful consideration shall be given to the choice of pavement type and its design. Different factors like initial (construction) cost, availability of good materials, maintenance or rehabilitation cost, technology requirement and its availability govern the selection of the type of pavement.
- 6.2 The options of pavement available are:
 - Flexible/bituminous pavement (BC);
 - Reinforced cement concrete (RCC) pavement;
 - Block pavement;
 - Composite pavement.

Characteristically selection of pavement will be guided by several other factors, such as type and strength of soil along the alignment; availability of good aggregates, availability of contractors, drainage conditions, etc.

6.3 Flexible Pavement

- 6.3.1 At large, the number of Commercial Vehicles per Day (CVD) shall be the main criterion for the selection of design templates of roads. If the CVD of any category is found higher than its corresponding CVD, then the structural design mentioned against that CVD will govern.
- 6.3.2 The structural design of pavement for roads with heavy traffic (CVD>500) shall be based on the forecast cumulative number of Equivalent Standard Axles (ESAs) that the road will experience over its lifetime. It has been recommended that roads with CVD>1000 and/or ESA>20 million shall be designed on a case by case basis.

- 6.3.3 It has been recommended to prepare and use customized structural design of road pavements on a case by case basis wherever feasible and/or deemed necessary.
- 6.3.4 The recommended flexible pavement design templates (eight no) for different CVD values (0-1000) have been shown in the following pages. Besides, six additional templates recommended for roads in hilly areas have been shown in Appendix G. A graphically illustration of the existing and proposed pavement thickness considering 4% subgrade CBR and maximum 5.5 million ESA for Type– 4SA & 4SB shows a logical progression of increasing pavement thickness with traffic volume in Figure 1.

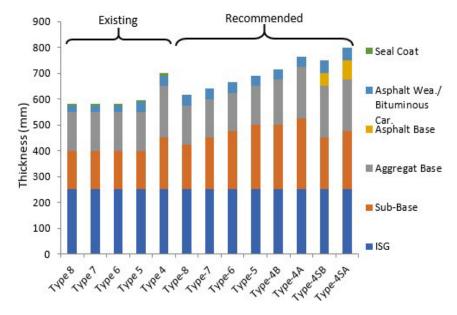
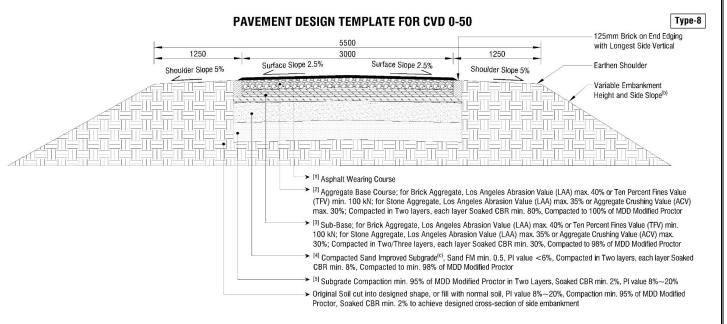
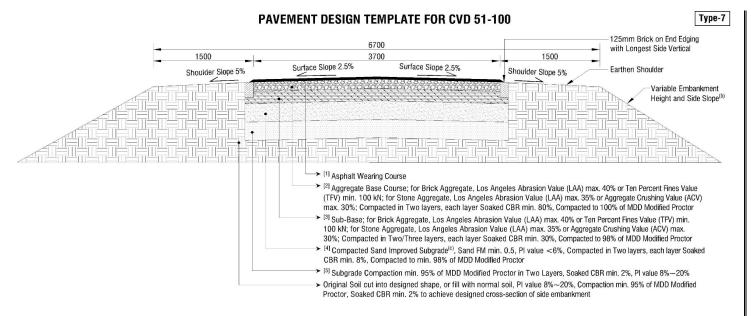



Figure 1: Comparison of Pavement Thickness

(a) All dimensions are in millimeter unless otherwise specified;

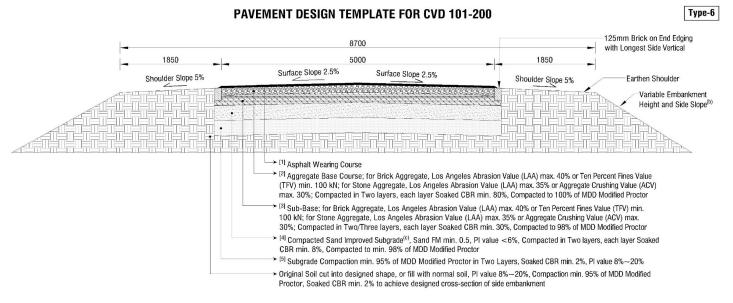
(b) Side Slope Protection method will vary for different conditions;


(c) The local sand can be used as ISG subject to approval of LGED if the sand satisfies the following two conditions:

(i) Passing # 200 sieve (Not more than 15%) and

(ii) CBR Value: 8% or above.

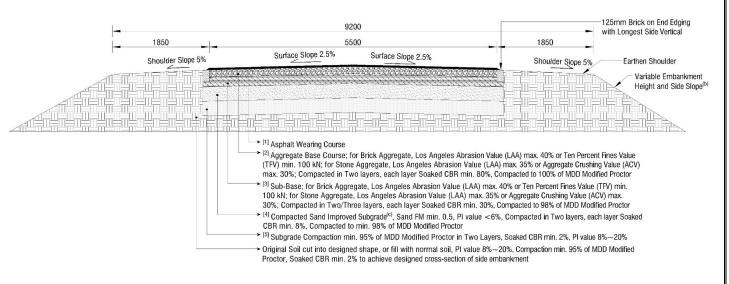
Subgrade Soaked CBR	Wearing Course (mm)	Base Course (mm)	Sub-base Course (mm)	Improved subgrade (mm)	Subgrade (mm) [5]	
(%)	[1]	[2]	[3]	[4]		
2	40	150	250	300	300	
3	40	150	225	300	300	
4	40	150	175	250	300	
5	40	150	175	225	300	
6	40	150	175	200	300	
≥7	40	150	150	-	300	


8826

- (a) All dimensions are in millimeter unless otherwise specified;
- (b) Side Slope Protection method will vary for different conditions;
- (c) The local sand can be used as ISG subject to approval of LGED if the sand satisfies the following two conditions:
 - (i) Passing # 200 sieve (Not more than 15%) and
 - (ii) CBR Value: 8% or above.

Subgrade Soaked CBR	Wearing Course (mm)	urse Base Course Sub-base Cours (mm) (mm)		Improved subgrade (mm)	Subgrade (mm)	
(%)	[1]	[2]	[3]	[4]	[5]	
2	40	150	275	300	300	
3	3 40		250	300	300	
4	40	150	200	250	300	
5	40	150	200	225	300	
6 40		150	200	200	300	
≥7	40	150	150	-	300	

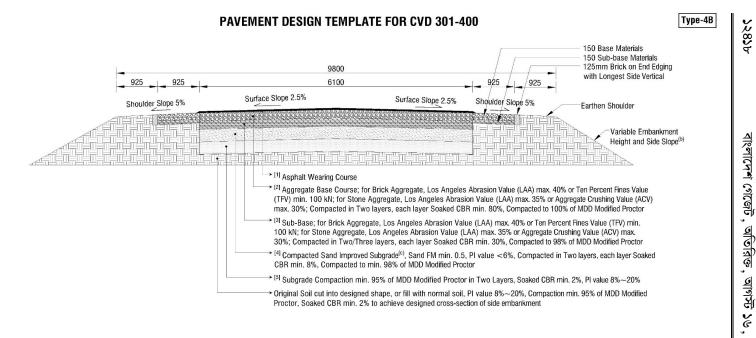
বাংলাদেশ গেজেট, অতিরিক্ত, আগস্ট ১৬ , ২০২১



- (a) All dimensions are in millimeter unless otherwise specified;
- (b) Side Slope Protection method will vary for different conditions;
- (c) The local sand can be used as ISG subject to approval of LGED if the sand satisfies the following two conditions:
 - (i) Passing # 200 sieve (Not more than 15%) and
 - (ii) CBR Value: 8% or above.

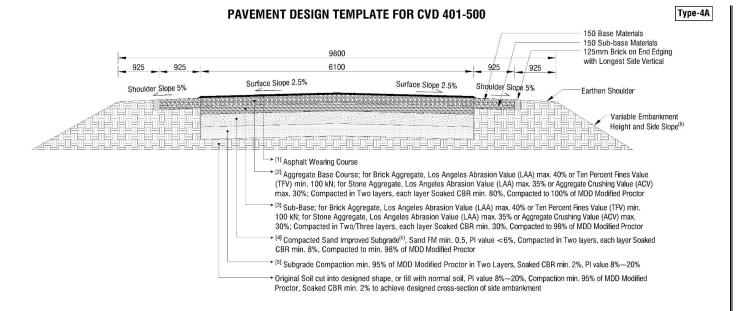
Subgrade Soaked CBR	Wearing Course (mm)	Base Course Sub-base Course Ir (mm) (mm)		Improved subgrade (mm)	Subgrade (mm)	
(%)	[1]	[2]	[3]	[4]	[5]	
2	40	150	300	300	300	
3	40	150	275	300	300	
4	40	150	225	250	300	
5	40	150	225	225	300	
6	40	150	225	200	300	
≥7	40	150	175	-	300	

৯৫৪২৫

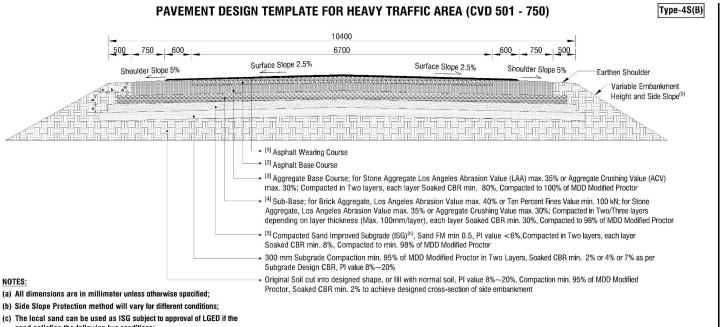


- (a) All dimensions are in millimeter unless otherwise specified;
- (b) Side Slope Protection method will vary for different conditions;
- (c) The local sand can be used as ISG subject to approval of LGED if the sand satisfies the following two conditions:
 (i) Passing # 200 sieve (Not more than 15%) and
 - (ii) CBR Value: 8% or above.

Subgrade Soaked CBR	Wearing Course (mm)	Base Course (mm)	Sub-base Course (mm)	Improved subgrade (mm)	Subgrade (mm)
(%)	[1]	[2]	[3]	[4]	[5]
2	40	175	300	300	300
3	40	175	275	300	300
4	40	150	250	250	300
5	40	150	250	225	300
6	40	150	250	200	300
≥7	40	150	200	-	300


Type-5

- (a) All dimensions are in millimeter unless otherwise specified;
- (b) Side Slope Protection method will vary for different conditions;
- (c) The local sand can be used as ISG subject to approval of LGED if the sand satisfies the following two conditions:
- (i) Passing # 200 sieve (Not more than 15%) and
 (ii) CBR Value: 8% or above.

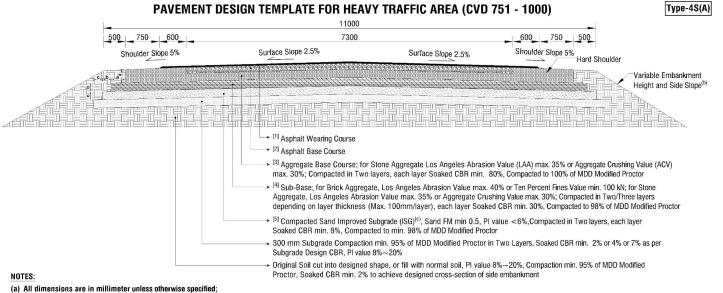

Subgrade Soaked CBR	Wearing Course (mm)	Base Course Sub-base Course I (mm) (mm)		Improved subgrade (mm)	Subgrade (mm)	
(%)	[1]	[2]	[3]	[4]	[5]	
2	40	200	300	300	300	
3	40	200	275	300	300	
4	40	175	250	250	300	
5	40	175	250	225	300	
6	40	175	250	200	300	
≥7	40	175	200	-	300	

とのとい

- (a) All dimensions are in millimeter unless otherwise specified;
- (b) Side Slope Protection method will vary for different conditions;
- (c) The local sand can be used as ISG subject to approval of LGED if the sand satisfies the following two conditions:
 - (i) Passing # 200 sieve (Not more than 15%) and (ii) CBR Value: 8% or above.

Subgrade Soaked CBR	Wearing Course (mm)	Base Course (mm)	Sub-base Course (mm)	Improved subgrade (mm)	Subgrade (mm) [5]	
(%)	[1]	[2]	[3]	[4]		
2	40	225	300	300	300	
3	3 40		275	300	300	
4	40	200	275	250	300	
5	5 40 6 40		250	225	300	
6			250	200	300	
≥7	40	200	200	-	300	

sand satisfies the following two conditions:


(i) Passing # 200 sieve (Not more than 15%) and

(ii) CBR Value: 8% or above.

	Layer Thickness for Subgrade Soaked CBR 2% - 3% $% \left({{\left({{\left({{\left({{\left({{\left({{\left({{\left($					Layer Thic	kness for Subg	agrade Soaked CBR 4% - 6% Layer Thickness for Subgrade Soaked CBR \geq 7%				≃7%			
Traffic in ESA		Pavement Thickness in mm					Pavement Thickness in mm					Pavement Th	nickness i	in mm	
(Millions)	[1]	[2]	[3]	[4]	[5]	[1]	[2]	[3]	[4]	[5]	[1]	[2]	[3]	[4]	[5]
	Asphalt Wearing Course	Asphalt Wearing Asphalt Base Base Sub-Base Improved				Asphalt Wearing Asphalt Base Course Course Sub-Base Sub-Base Sub-Base Sub-Base Sub-Base Sub-Grade				3				Improved Sub-Grade	
2.5-5.5	50	50	200	250	300	50	50	200	200	250	50	50	200	200	
5.6-10.5	50	75	225	275	300	50	75	200	225	250	50	75	200	225	
10.6-20.0	50	100	250	275	300	50	100	225	225	300	50	100	225	250	

とのと

52820

(b) Side Slope Protection method will vary for different conditions;

(c) The local sand can be used as ISG subject to approval of LGED if the

sand satisfies the following two conditions:

(i) Passing # 200 sieve (Not more than 15%) and

(ii) CBR Value: 8% or above.

	Layer Thic	kness for Subg	ked CBR 2%	5 - 3%	Layer Thickness for Subgrade Soaked CBR 4% - 6%				Layer Thickness for Subgrade Soaked CBR $\geq\!7\%$						
Traffic in ESA	Pavement Thickness in mm						Pavement T	t Thickness in mm Pavement Thickness in mm							
(Millions)	[1]	[2]	[3]	[4]	[5]	[1]	[2]	[3]	[4]	[5]	[1]	[2]	[3]	[4]	[5]
	Asphalt Wearing Course	Asphalt Base Course	Base Course	Sub-Base Course	Improved Sub-Grade	Asphalt Wearing Course	Asphalt Base Course	Base Course	Sub-Base Course	Improved Sub-Grade	Asphalt Wearing Course	Asphalt Base Course	Base Course	Sub-Base Course	Improved Sub-Grade
2.5-5.5	50	50	200	250	300	50	50	200	200	250	50	50	200	200	
5.6-10.5	50	75	225	275	300	50	75	200	225	250	50	75	200	225	
10.6-20.0	50	100	250	275	300	50	100	225	225	300	50	100	225	250	

১২৪২১

6.4 Rigid Pavement

- 6.4.1 Rigid pavements offer an alternative to flexible pavements especially where the soil strength is poor, the aggregates are costly, mobilization of heavy construction equipment is difficult and drainage conditions are poor. Rigid pavement has been recommended for the submersible roads in Haor areas and road segments across hat-bazar, growth center, and builtup areas where water logging is a common phenomenon. The geometric and structural design of rigid pavement will generally depend on CVD values. Design templates for rigid pavement for various scenarios have been suggested in Appendix- H.
- 6.4.2 To construct a durable rigid pavement in coastal regions that withstands the aggressive marine environment, composite cement of appropriate type, high range water reducing admixture, and fusion bonded epoxy coated reinforcing bar will be used.
- 6.5 The design templates for the Flexible/Bituminous pavement (BC) and Reinforced Cement Concrete (RCC) pavement have been recommended in the standards. LGED shall design Block Pavement, Composite Pavement and HBB (Herringbone Bond) roads on a case by case basis.

7 Design Period

- 7.1 The design period or design life is usually defined as the number of years until the first major reconstruction is anticipated. It has been considered appropriate that roads in rural areas shall be designed for a design period of 10 years. But rigid pavements designed and constructed as per recommendations contained in this document shall have a design life of not less than 20 years.
- 7.2 However, the design life of pavement may be affected by various environmental factors such as moisture, humidity, salinity, rainfall intensity, wind, temperature fluctuations, and solar radiation. It may also be affected by factors like maintenance practices, usage intensity, overloading of vehicle, flash flood, tidal surge etc.

8 Road Drainage

8.1 The drainage of the road surface, road pavement layers, and subgrade are some of the most important aspects of road construction. The road surface will be designed to shed water as quickly as possible during the rainfall.

8.2 To prevent the rapid deterioration of pavement layers and to maintain the subgrade at or above the design strength, it is essential that any water entering the pavement layers be allowed to drain away as quickly as possible. Not only standing water in the pavement layers reduce the pavement strength but also the high pore-water pressures developed under the action of traffic loads rapidly lead to a disintegration of surfacing. The pavement will drain the water away through channels on both sides. The drainage material must be of a size that allows the passage of the water; not be too large to allow fines to be washed away from the pavement.

9 Side-slope Protection

9.1 Stabilizing the roadside slope is very important for ensuring the sustainability and durability of road embankments. The rural roads will adopt different methods to stabilize side-slopes for different scenarios with different side slope ratios (V: H). The methods recommended for side slope protection work in rural roads have been mentioned in Appendix - I which include but are not limited to grass turfing, geo-jute, gunny bags, synthetic geotextiles, gabions, longrooted vegetation, concrete blocks, and palisading work with concrete posts. Designers will select or customize the protection method considering cost-effectiveness, the availability of construction materials, and skilled workers. A side slope ratio from 1:1.5 to 1:2 has been recommended. However, designers may apply their engineering judgment to optimize the side slope ratio for better stabilization in a particular field condition. A summary of the recommended slope protection methods with preferable scenarios is given in Table 3.

Sl. No.	Method	Preferable Scenario
01	Slope Protection work with Long Routed Grass Turfing	General Road Embankments
02	Slope Protection Work for High Embankment (Above 4.5 m) with Long Rooted Grass	High Embankments, Haor/Coastal Areas
03	Slope Protection Work with Grass Turfing & Jute Geotextile on Slope for Sandy Soil	Sandy Soil
04	Slope Protection work with Grass Turfing, Jute Geotextile & Geo-Bags on Slope for Clayey Soil	Clayey Soil
05	Slope Protection work with Long Rooted Grass Turfing & Jute Geotextile on Slope for Hilly Areas	Hilly Areas
06	Slope Protection work with Gunny Bagged Riprap	General Road Embankments

Sl. No.	Method	Preferable Scenario
07	Slope Protection work with Gabions	Haor Areas/Coastal Areas
08	Slope Protection work with Long Rooted Grass, Vegetation, Block and Gabions	Haor Areas/Coastal Areas
09	Slope Protection work with Masonry Brick and Pre-Cast RCC Post	General Road Embankments

Table 3: Methods of Side Slope Protection

10 Road Safety

- 10.1 The roads will be designed with effective and adequate road furniture, for instance, road marking, guard rails, traffic signage, etc. Sufficient offset distance from natural roadside features will be maintained and sharp curves will be widened in the inner sides. Passing lanes and bus bays will be provided wherever convenient. Properly designed traffic calming devices like speed humps, rumble strips, etc. will be used wherever applicable.
- 10.2 The road intersections will be channelized with the provision of stacking lanes and adequate turning radii. In the case of LGED and RHD road intersection, the traffic will entry and exit through slip lanes with acceleration and deceleration lanes. The typical sections have been shown in Appendix– J.

11 Environment & Climate Change

- 11.1 The standards have addressed the environment and climate change issues. Climatic vulnerabilities have been taken care of in designing slope protection works and surface drainage systems. For quick runoff surface water, 2.5% cross-fall in camber and 5% cross slope in shoulder have been prescribed.
- 11.2 It has been recommended to preserve a freeboard of 0.9 m from the bottom of the sub-grade to the Highest Flood Level (HFL) on 20 years' return period. The 20-year return period has been suggested to increase to 30 years in the flood-prone areas to prevent the subgrade saturation. Based on the site condition, the designers will apply their engineering judgment in this regard.
- 11.3 The harder grades of bitumen with higher viscosity (e.g. VC 30, VC 40) has been suggested in the area with prolonged intense rainfall and high projected traffic volumes. Besides, the Polymer Modified Bitumen (PMB) has been suggested using on a pilot basis for wearing courses at those sections of the road only where extreme traffic volume is expected.

22828

11.4 In addition, LGED will apply on a pilot basis any other environmentally conducive new or improved technology/practice and subsequently scale up based on the findings/results to have a competitive advantage.

12 Culverts and Bridges

- 12.1 Bridges shall be designed for a period of at least 75 years. The latest version of 'AASHTO LRFD Bridge Design Specifications' will be used as design standards for LGED bridges. For the vehicular live load of bridges, the AASHTO HL-93 loading shall be followed.
- 12.2 The designers shall design on a case by case basis for culvert and bridge. In general, the width of bridge and/or culvert will be equal to or more than the crest width of the carriageway. The vertical and horizontal navigational clearance of bridges shall be in accordance with the guideline of BIWTA (Bangladesh Inland Water Transport Authority).
- 12.3 Other necessary clearances, if requirement arises in future, for roads, overpass and bridges shall have to be received from relevant government organizations.
- 12.4 This standard is subject to future review in every five year.

13 Cost

The cost of engineering interventions shall be estimated based on the schedule of rates of LGED to ensure optimal utilization of resources. The rates of different items vary regionally because of the availability of local construction material, labor, equipment, difficulties and distance of transporting construction material in remote & inaccessible areas, etc. The schedule of rates will be updated regularly to cope with the latest scenarios.

14 Conclusions

LGED is responsible to construct, maintain/rehabilitate and upgrade the rural roads i.e. Upazila road, Union road & Village roads in Bangladesh which are the lifeline of fast expanding rural economy. The standards shall guide LGED in constructing new roads in a sustainable way. The recommended standards have considered the growing traffic volume, varying subgrade condition of different geographic areas, climate change and other relevant aspects. The standards were originally prepared by BRTC, BUET and critically reviewed/revised by various stakeholders. It can be expected that the upgraded design standards will contribute in the sustainable development of the country.

Appendix-A

Sl. No	Name of Professor	Position Assigned	Area of Expertise
1.	Prof. Dr. Md. Mizanur Rahman	Team Leader and Senior Material Specialist	Highway Materials, Geometric design of pavement, Traffic survey
2.	Prof. Dr. Hasib Mohammed Ahsan	Senior Transport Planning and Safety Specialist	Transportation and Land use planning, Road safety
3.	Prof. Dr. Md. Shamsul Hoque	Senior Road Management Specialist	Geometric design of pavement, Road planning, Road management, Concrete block pavement
4.	Prof. Dr. Md. Moazzem Hossain	Senior Pavement Design Specialist	Structural design of Rigid and Flexible pavement
5.	Prof. Dr. Tanweer Hasan	Senior Pavement Design Specialist	Structural design of Rigid and Flexible pavement
6.	Prof. Dr. Abdul Jabbar Khan	Senior Geotechnical Specialist	Embankment Slope protection, Geo-jute and Geo-material
7.	Prof. Dr. Md. Hadiuzzaman	Traffic Survey and Modelling Specialist	Traffic survey, Traffic modeling and Traffic simulation

Composition of the BRTC, BUET team engaged in upgrading of the Standards

Appendix- B

Members of the Committee for Classification, Ownership, Responsibility Fixation and Dispute Resolution of Roads

- 1. Member, Planning Commission (Physical Infrastructure Division) Convener;
- 2. Representative, Ministry of Road, Transport & Bridges / Local Government Division;
- 3. Representative, Planning Commission (Rural Institution Wing);
- 4. Representative, Roads and Highways Department / Local Government Engineering Department.

Terms of Reference

The committee will recommend for approval and gazette notification on the Road Design Standards of LGED.

Appendix- C

Road Design Standards Committee

Members

- 1. Chief, Physical Infrastructure Division, Planning Commission Convener
- 2. Representative from Implementation, Monitoring and Implementation Division (IMED)
- 3. Representative from Roads and Highways Department (RHD)
- 4. Representative from Local Government Engineering Department (LGED)
- 5. Representative from Bangladesh Water Development Board (BWDB)
- 6. Representative from Bangladesh Institute of Development Studies (BIDS)
- 7. Representative from Bangladesh University of Engineering and Technology (BUET)
- 8. Representative from Department of Geography & Environment, University of Dhaka

Terms of Reference

The committee will review the Road Design Standards of LGED and recommend to the 'Committee for Classification, Ownership, Responsibility Fixation and Dispute Resolution of Roads' for finalizing.

বাংলাদেশ গেজেট, অতিরিক্ত, আগস্ট ১৬, ২০২১

Appendix- D

Glossary

	Glossal y
Asphalt	An adhesive substance that is used in road construction as a binder material.
Asphalt Base Course	The base course underneath the wearing course of a flexible pavement which is treated with asphalt, is asphalt base course.
Asphalt Concrete (AC)	A mixture to predetermined proportions of aggregate, filler and bituminous binder material plant mixed and usually placed by means of a paving machine.
Asphalt Surfacing	The layer or layers of asphalt concrete constructed on top of the base course, and, in some cases, the shoulders.
Asphalt Wearing Course	The top course of an asphalt surfacing or, for gravel roads, the uppermost layer of construction of the roadway made of specified materials.
Average Annual Daily Traffic (AADT)	The total yearly traffic volume in both directions divided by the number of days in the year.
Average Daily Traffic (ADT)	The total traffic volume during a given time period in whole days greater than one day and less than one year divided by the number of days in that time period.
Base Course	This is the main component of the pavement contributing to the spreading of the traffic loads. In many cases, it will consist of crushed stone or gravel, or of good quality brick chips.
Bitumen	The most common form of bitumen is the residue from the refining of crude oil after the more volatile material has been distilled off. It is essentially a very viscous liquid comprising many long-chain organic molecules.
Carriageway	That portion of the roadway including the various traffic lanes but excluding shoulders.
Commercial Vehicle	A specific classification of vehicles is suggested by Bangladesh Planning Commission to be considered for survey and design purpose; among the enlisted vehicles, vehicles itemized sequentially from "delivery vehicle" to "7 Axle vehicle" are defined as commercial vehicle.
Crest	Peak formed by the junction of two gradients.
Design Period	The period of time that an initially constructed or rehabilitated pavement structure will perform before reaching a level of deterioration requiring more than routine or periodic maintenance.

Equivalent Standard Axles (ESAs)	A measure of the potential damage to a pavement caused by a vehicle axle load expressed as the number of 8.2 tons single axle loads that would cause the same amount of damage.
Equivalent Single Axle Load (ESAL)	Summation of equivalent 8.2 tons single axle loads used to combine mixed traffic to calculate the design traffic loading for the design period.
Fill	Material of which a man-made raised structure or deposit such as an embankment is composed, including soil, soil-aggregate or rock.
Flexible Pavements	Pavement with a bituminous surfacing and with a base course layer and a sub-base course layer.
Heavy Vehicle	Those having an unloaded weight of 6577 kg or more.
Passenger Car Unit (PCU)	A measure of the impedance offered by a vehicle to the passenger cars in the traffic stream. Usually quoted as the number of passenger cars required to offer a similar level of impedance to the cars in the stream.
Shoulder	Part of the road outside the carriageway, but at substantially the same level, for accommodation of stopped vehicles for emergency use, for lateral support of the carriageway.
Side Slope	Area between the outer edge of shoulder or hinge point and the ditch bottom.
Sub-base	The layer of material of specified dimensions on top of the subgrade and below the road base. The secondary load-spreading layer underlying the base course.
Subgrade	The surface upon which the pavement structure and shoulders are constructed.
Subsurface Drain	Covered drain constructed to intercept and remove subsoil water, including any pipes and permeable material in the drains.
Super elevation	Inward tilt or transverse inclination given to the cross section of a carriageway throughout the length of a horizontal curve to reduce the effects of centrifugal force on a moving vehicle; expressed as a percentage.
Traffic Volume	Volume of traffic usually expressed in terms of average annual daily traffic (AADT).

Appendix-E

Equivalence Factors for Different Axle Loads

Types Classification	ESA Factor
7 Axle 3PM4T 44T	6.7
6 Axle 3PM3T 41T	3.8
5 Axle 3PM2T 38T	4.6
5 Axle 2PM3T 35T	2.9
4 Axle 2PM2T 33T	5.0
4 Axle 2PM2T 32T	4.4
4 Axle 2R4 30T	3.4
4 Axle 2R4 25T	1.4
3 Axle 2PM1T 25T	6.7
3 Axle 2R3 22T	2.7
2 Axle 2R2 15T	4.6
Truck Medium (Two or Three Axle Rigid > 3.5 Ton pay-loads)	4.62
Truck Medium (Two Axle Rigid > 3.5 Ton pay-loads)	4.62
Bus Medium (>40 seats and > 36 Feet Seats)	1
Bus Mini (16-39 seats and < 36 Feet Seats)	0.5
Bus Light (< 16 seats)	0.5
Utility (Land rover/Jeep type vehicles)	0.5
Delivery Vehicle (Panel Van, Pickup Truck)	0.5

Table 4: ESA Factors for different Axle Loads

Note: For local vehicles in different areas used as commercial vehicles, the ESA factor can be assumed by applying engineering judgment.

Appendix-F

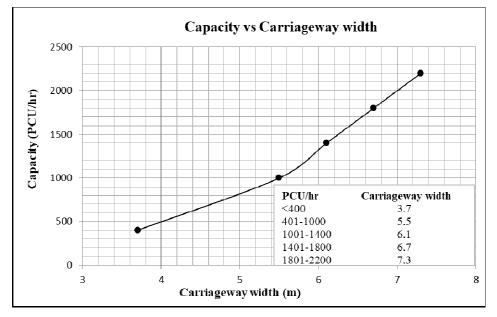
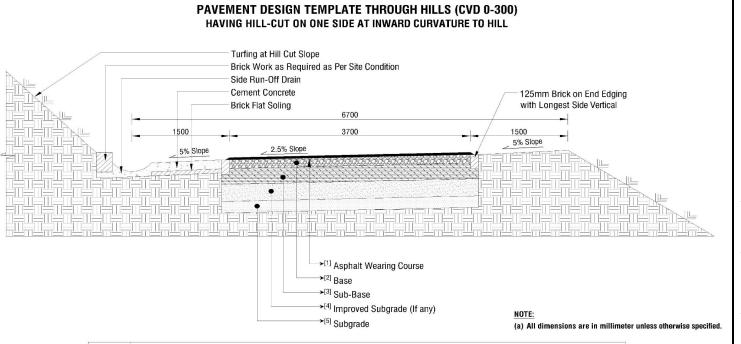
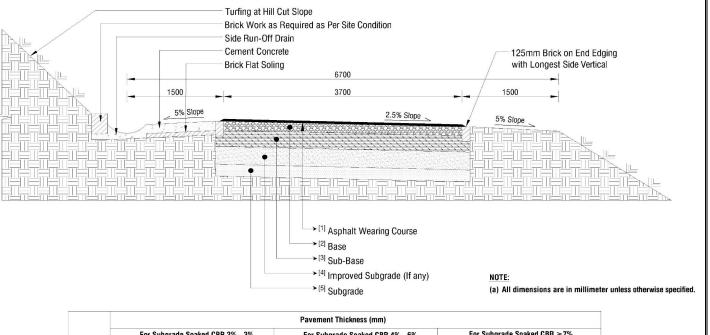



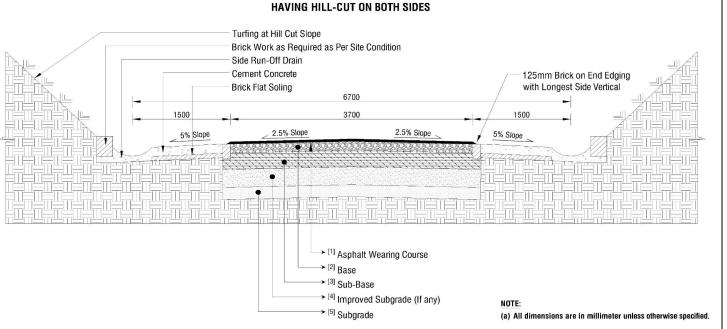
Figure 2: Relationship between Roadway Capacity and Carriageway Width

Vehicle Type	PCU
Truck (All Trucks)	3.6
Bus	3.0
Utility Vehicles (Delivery Van/ Covered Van/ Land Rover/Jeep)	1.3
Car	1.0
Tempo/CNG/Baby Taxi	1.0
Auto Rickshaw	0.6
Pedal/Van Rickshaw	1.0
Motorcycle	0.4
Bicycle	0.5
Animal (Bullock/Horse/All animal) Cart & Human Drawn/Pushcart	4.0

Table 5: Passenger Car Unit (PCU)

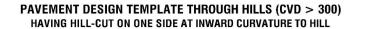

		Pavement Thickness (mm)												
CVD	For Subg	For Subgrade Soaked CBR 2% - 3%					ked CBR 4%	- 6%	For Subg	jrade Soa	ked CBR ≥	7%		
	[1] Asphalt Wearing Course	[2]	[3]	[4]	[1]	[2] [3]		[4]	[1]	[2]	[3]	[4]		
			Sub-Base Course			Base Course		Improved Subgrade		Base Course	Sub-Base Course	Improved Subgrade		
0-100	40	150	250	300	40	150	200	250	40	150	150	-		
101-200	40	150	275	300	40	150	225	250	40	150	175	-		
201-300	40	175	300	300	40	150	250	250	40	150	200	-		

২08


Appendix – G

বাংলাদেশ গেজেট, অতিরিক্ত, আগস্ট ১৬, ২০২১

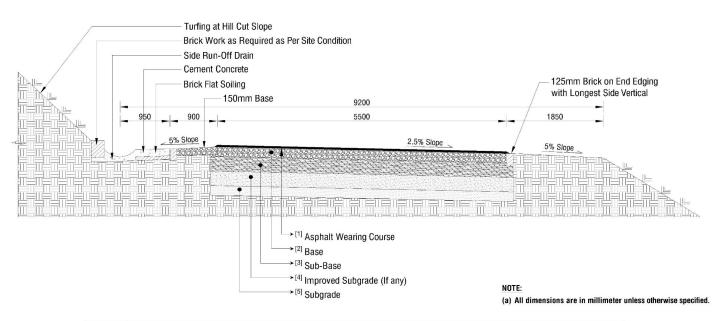
PAVEMENT DESIGN TEMPLATE THROUGH HILLS (CVD 0-300) HAVING HILL-CUT ON ONE SIDE AT OUTWARD CURVATURE TO HILL



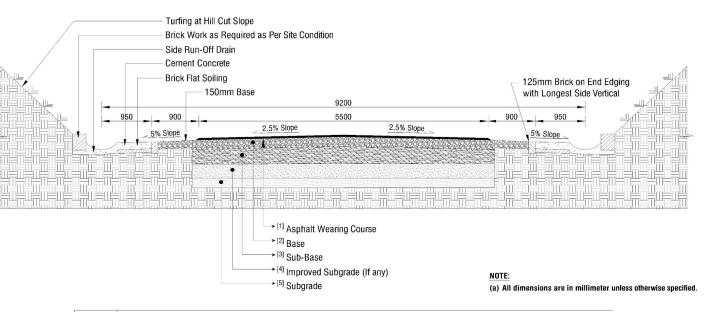
	Pavement Thickness (mm)												
	For Subg	ked CBR 2%	- 3%	For Subg	rade Soal	ked CBR 4%	- 6 %	For Subg	rade Soa	ked CBR \geq	7%		
CVD	[1]	[2]	[3]	[4]	[1]	[2]	[3]	[4]	[1]	[2]	[3]	[4]	
	Asphalt Wearing Course	Base Course	Sub-Base Course	Improved Subgrade	Asphalt Wearing Course	Base Course	Sub-Base Course	Improved Subgrade	Asphalt Wearing Course	Base Course		Improved Subgrade	
0-100	40	150	250	300	40	150	200	250	40	150	150		
101-200	40	150	275	300	40	150	225	250	40	150	175	-	
201-300	40	175	300	300	40	150	250	250	40	150	200	-	

PAVEMENT DESIGN TEMPLATE THROUGH HILLS (CVD 0-300)

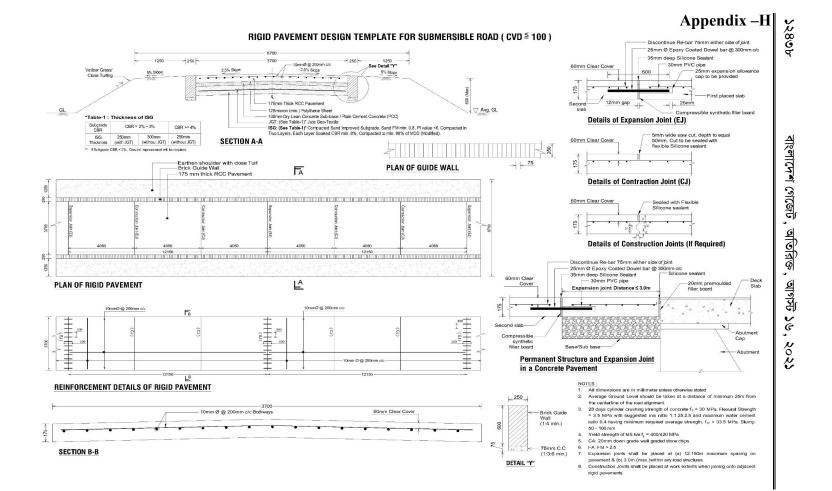
	Pavement Thickness (mm)												
	For Subg	ked CBR 2%	- 3%	For Subg	rade Soal	ked CBR 4%	- 6 %	For Subg	yrade Soa	ked CBR \geq	7%		
CVD	[1]	[2]	[3]	[4]	[1]	[2]	[3]	[4]	[1]	[2]	[3]	[4]	
000	Asphalt Wearing Course	Base Course	Sub-Base Course	Improved Subgrade	Asphalt Wearing Course	Base Course	Sub-Base Course	Improved Subgrade	Asphalt Wearing Course	Base Course	Sub-Base Course	lmproved Subgrade	
0-100	40	150	250	300	40	150	200	250	40	150	150	-	
101-200	40	150	275	300	40	150	225	250	40	150	175	-	
201-300	40	175	300	300	40	150	250	250	40	150	200	-	

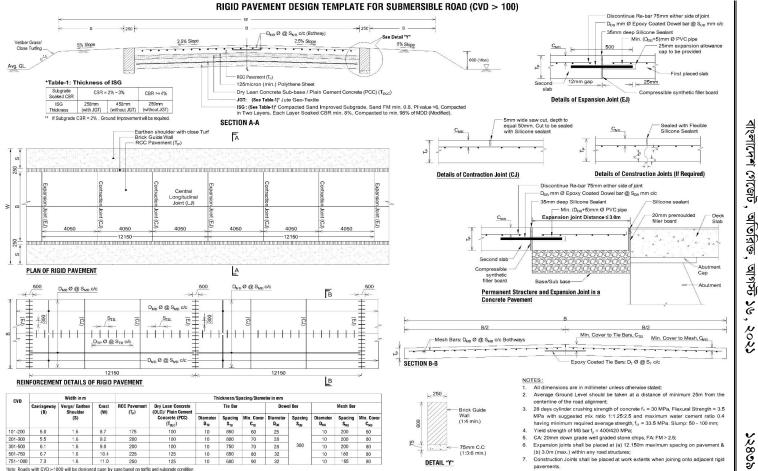


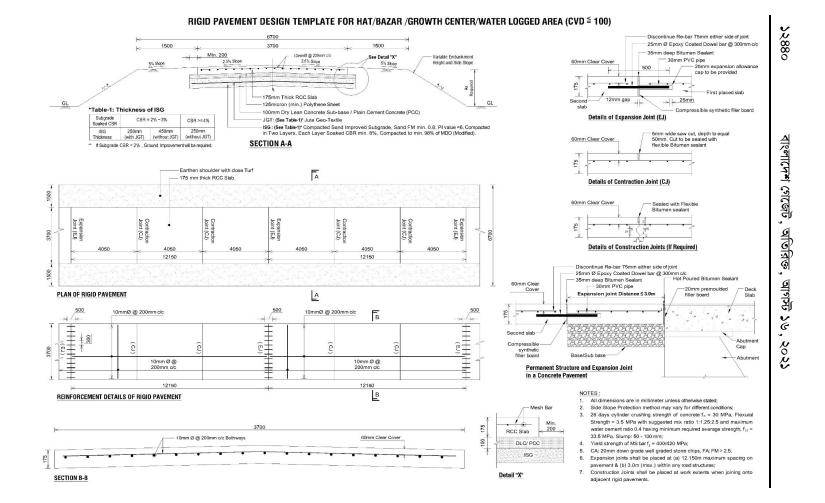
		Pavement Inickness (mm)												
CVD	Layer Thickne	ubgrade CBI	R 2% - 3%	Layer Thickn	ess for S	ubgrade CBI	R 4% - 6%	Layer Thickness for Subgrade CBR \geq 7%						
	[1]	[2]	[3]	[4]	[1]	[2]	[3]	[4]	[1]	[2]	[3]	[4]		
	Asphalt Wearing Course	Base Course	Sub-Base Course	Improved Subgrade	Asphalt Wearing Course	Base Course	Sub-Base Course	Improved Subgrade	Asphalt Wearing Course	Base Course	Sub-Base Course	Improved Subgrade		
301-400	40	200	300	300	40	175	250	250	40	175	200	-		
401-500	40	225	300	300	40	200	250	250	40	200	200	-		

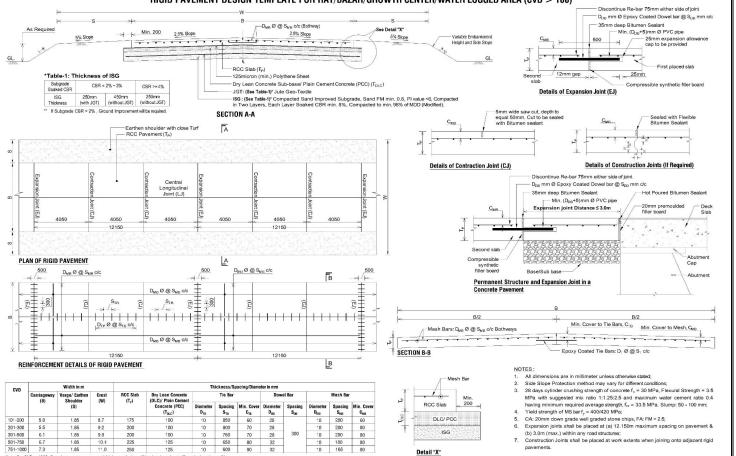

Note: Hilly roads with CVD>500 will be designed case by case based on traffic and subgrade condition

	Pavement Thickness (mm)												
	Layer Thickn	ubgrade CBI	R 2% - 3%	Layer Thickn	ess for Su	ıbgrade CBI	R 4% - 6%	Layer Thickness for Subgrade CBR \geq 7%					
CVD	[1]	[2]	[3]	[4]	[1]	[2]	[3]	[4]	[1]	[2]	[3]	[4]	
	Asphalt Wearing Course	Base Course	Sub-Base Course	Improved Subgrade	Asphalt Wearing Course	Base Course	Sub-Base Course	Improved Subgrade	Asphalt Wearing Course	Base Course	Sub-Base Course	Improved Subgrade	
301-400	40	200	300	300	40	175	250	250	40	175	200	-	
401-500	40	225	300	300	40	200	250	250	40	200	200	-	


Note: Hilly roads with CVD>500 will be designed case by case based on traffic and subgrade condition




PAVEMENT DESIGN TEMPLATE THROUGH HILLS (CVD > 300) HAVING HILL-CUT ON BOTH SIDES

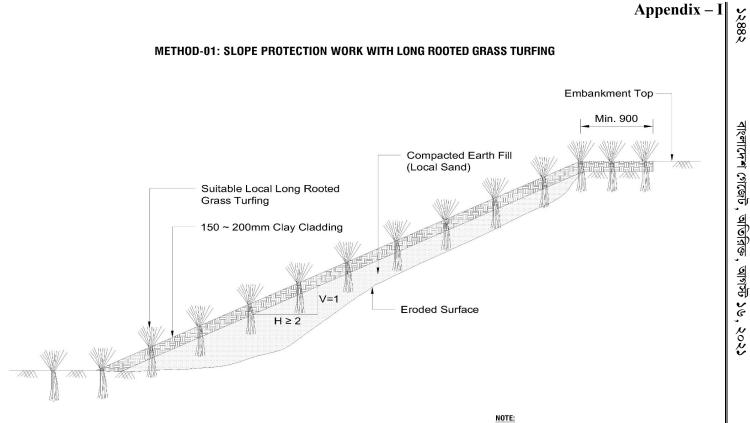

	Pavement Thickness (mm)												
	Layer Thickn	ess for Si	ubgrade CBI	R 2% - 3%	Layer Thickn	ess for S	ubgrade CBI	R 4% - 6%	Layer Thickness for Subgrade CBR \geq 7%				
CVD	[1]	[2]	[3]	[4]	[1]	[2]	[3]	[4]	[1]	[2]	[3]	[4]	
	Asphalt Wearing Course	Base Course	Sub-Base Course	Improved Subgrade	Asphalt Wearing Course	Base Course	Sub-Base Course	Improved Subgrade	Asphalt Wearing Course	Base Course	Sub-Base Course	Improved Subgrade	
301-400	40	200	300	300	40	175	250	250	40	175	200	-	
401-500	40	225	300	300	40	200	250	250	40	200	200	-	

Note: Hilly roads with CVD>500 will be designed case by case based on traffic and subgrade condition

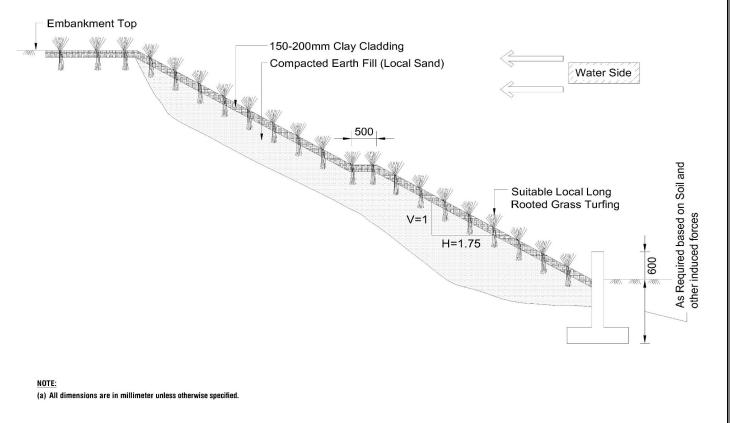
বাংলাদেশ গেজেট,

অতিরিক্ত,

, আগস্ট


č

とのとい


٠

Note: For CVD >1000, Case by case geometry and thickness design will be done based on traffic and subgrade con

²⁸⁸⁵⁵

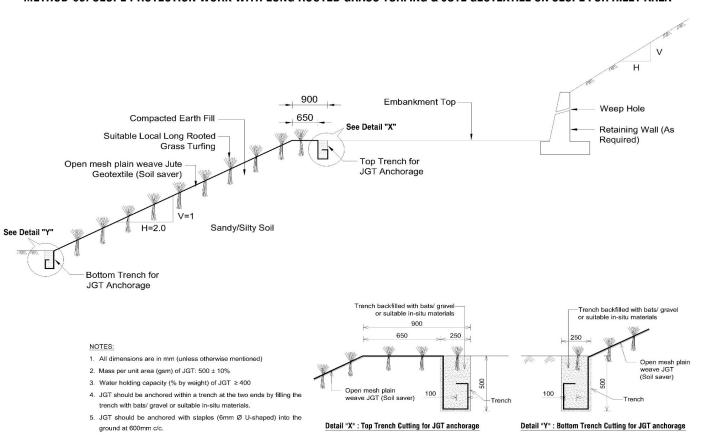
NUTE: (a) All dimensions are in millimeter unless otherwise specified.

METHOD-02: SLOPE PROTECTION WORK FOR HIGH EMBANKMENT (ABOVE 4.5m) LONG ROOTED GRASS

08820

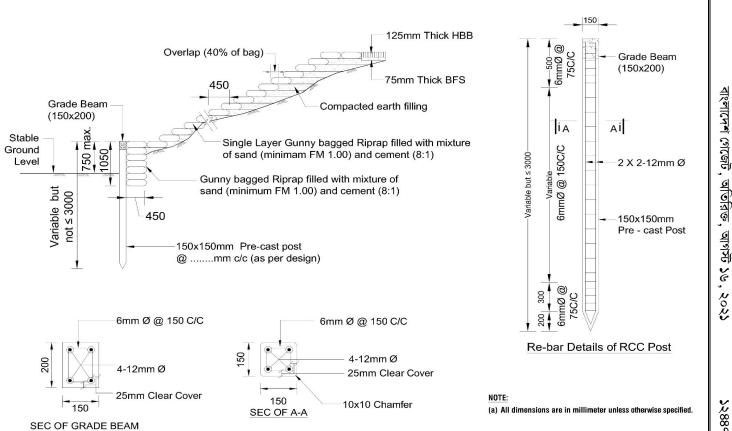
METHOD-03: SLOPE PROTECTION WORK WITH LONG ROOTED GRASS TURFING & JUTE GEOTEXTILE ON SLOPE FOR SANDY SOIL

888 \$

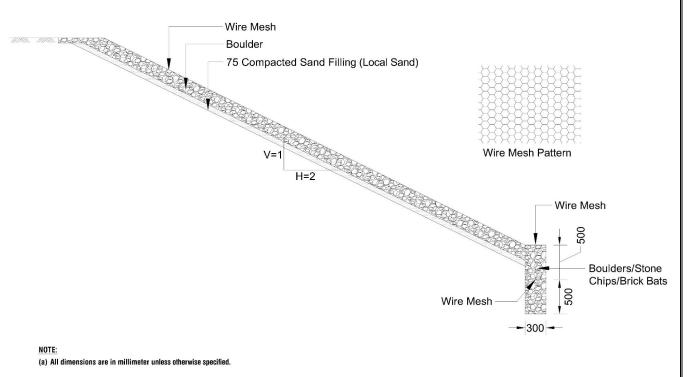

METHOD-04: SLOPE PROTECTION WORK WITH GRASS TURFING, JUTE GEOTEXTILE & GEO-BAGS ON SLOPE FOR CLAYEY SOIL

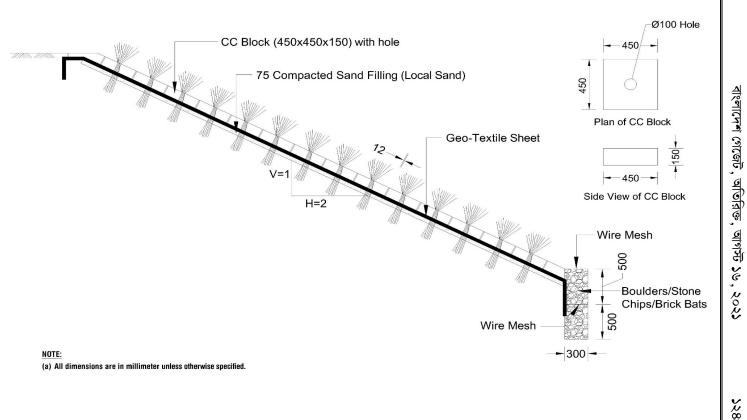
NOTES:

1. All dimensions are in mm (unless otherwise mentioned);

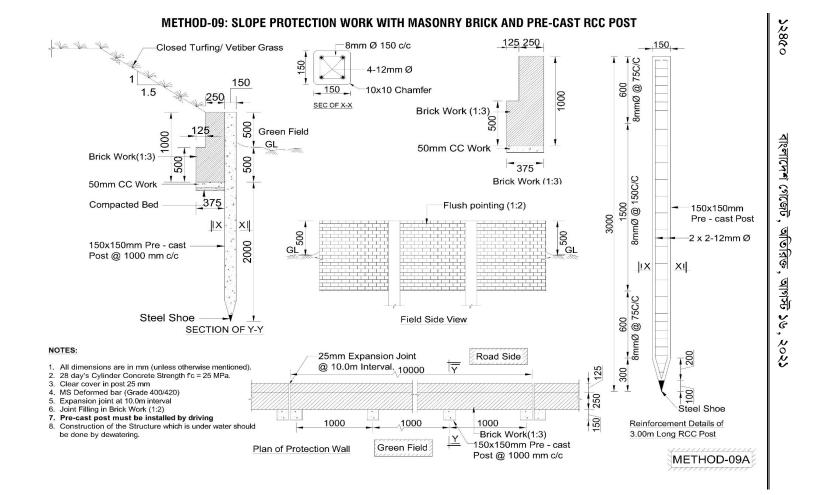

2. Length of Geotextile in each layer depends on the failure plane;

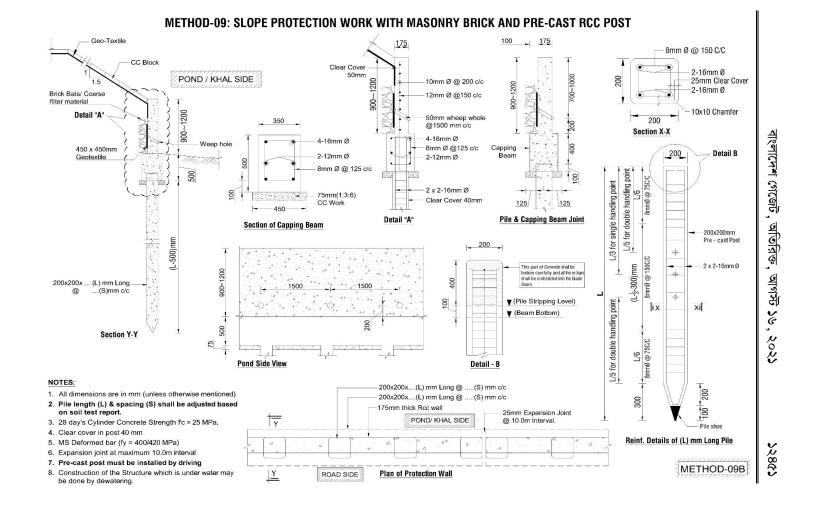
3. Overlapping of Geotextile for succeeding layers should be at least 40%.

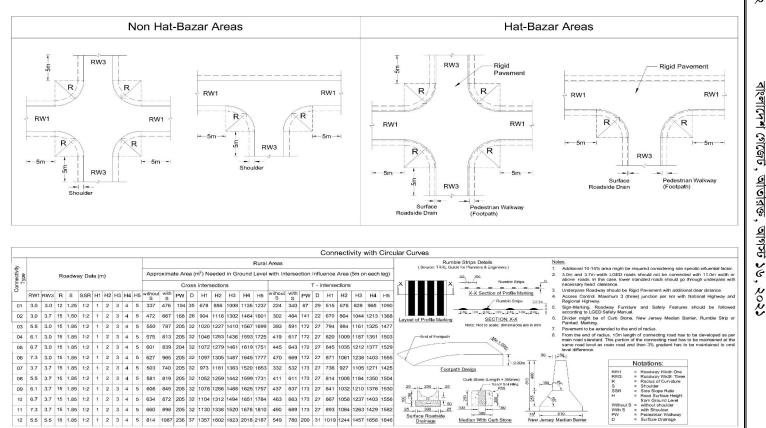

METHOD-05: SLOPE PROTECTION WORK WITH LONG ROOTED GRASS TURFING & JUTE GEOTEXTILE ON SLOPE FOR HILLY AREA


৯৪৪৯৫

METHOD-06: SLOPE PROTECTION WORK WITH GUNNY BAGGED RIP-RAP


METHOD-07: SLOPE PROTECTION WORK WITH GABIONS





METHOD-08: SLOPE PROTECTION WORK WITH LONG ROOTED GRASS, VEGETATION, BLOCK AND GABIONS

\$\$88

08 5.5 3.7 15 1.85 1.2 1 2 3 4 5 581 819 205 32 1052 1259 1442 1599 1731 411 611 173 27 814 1005 1184 1350 1504

09 6.1 3.7 15 1.85 1.2 1 2 3 4 5 608 845 205 32 1078 1286 1468 1625 1757 437 637 173 27 841 1032 1210 1376 1530

10 6.7 3.7 15 1.85 1.2 1 2 3 4 5 634 872 205 32 1104 1312 1494 1651 1784 463 663 173 27 867 1058 1237 1403 1556

11 7.3 3.7 15 1.85 1.2 1 2 3 4 5 660 898 205 32 1130 1338 1520 1678 1810 490 689 173 27 893 1084 1263 1429 1582

12 5.5 5.5 18 1.85 1.2 1 2 3 4 5 814 1087 236 37 1357 1602 1823 2018 2187 549 780 200 31 1019 1244 1457 1658 1846

LGED-LGED ROAD INTERSECTIONS WITH CIRCULAR CURVES

Sand/ Soil Filling R50 Curb Stone (Length = 30

Median With Curb Stone

25 +||+ 250 +||+ 25

side

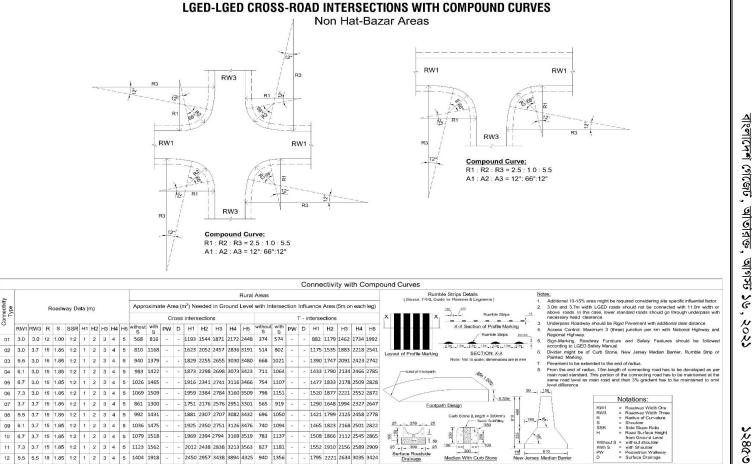
Surface Road

180 Cy.

75

185

New Jersey Median Ba


610

S SSR H

Without S = With S = PW = D =

Appendix – J 23865

> বাংলাদেশ গেজেট অতিরিক্ত, , আগস্ট Ğ

1795 2221 2634 3035 3424

Median With Curb Stone

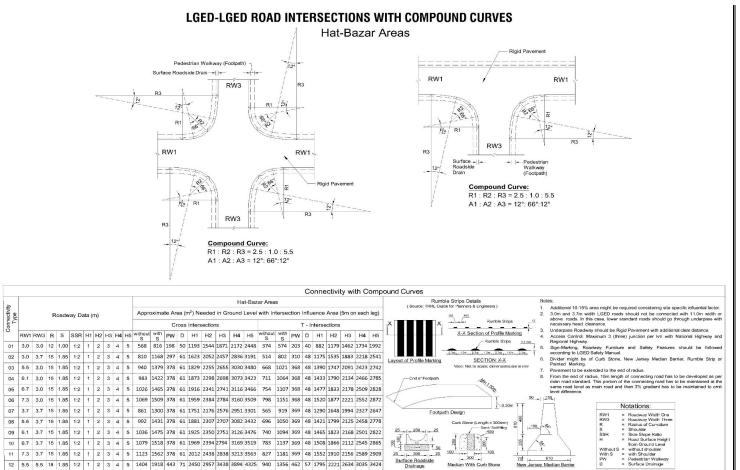
Jersey Median Ba

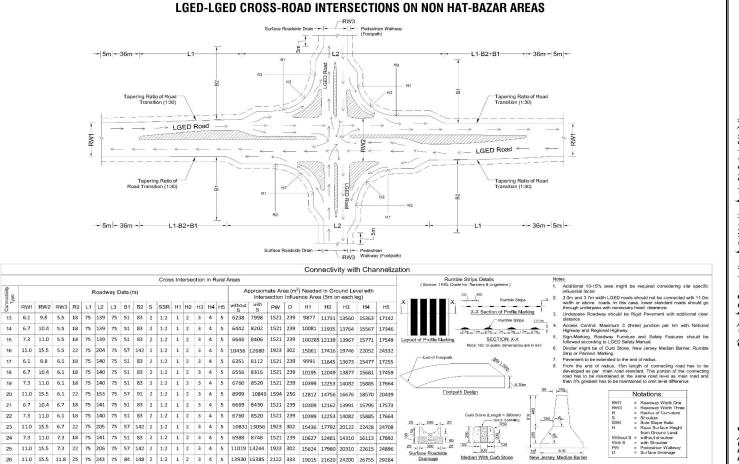
2450 2957 3438 3894 4325 940 1356

ype

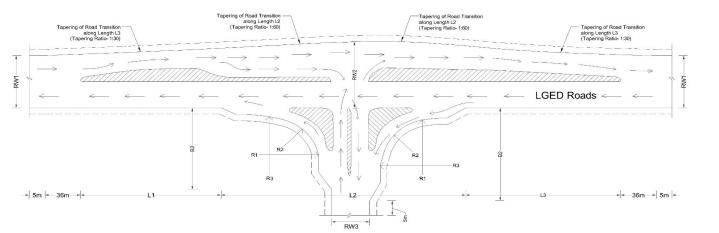
01

02


03


04

12 5.5 5.5 18 1.85 1:2 1 2 3 4 5 1404 1918

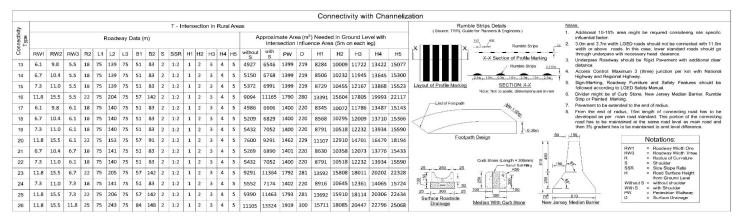

ō

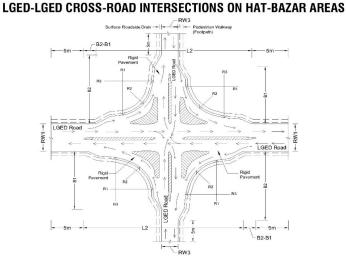
বাংলাদেশ গেজেট, অতিরিক্ত, , আগস্ট č

বাংলাদেশ গেজেট, অতিরিক্ত, আগস্ট ১৬, ২০২১

LGED-LGED ROAD T-INTERSECTIONS ON NON HAT-BAZAR AREAS

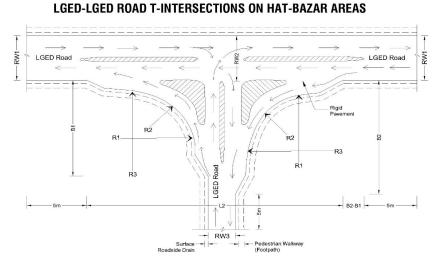
9.2850

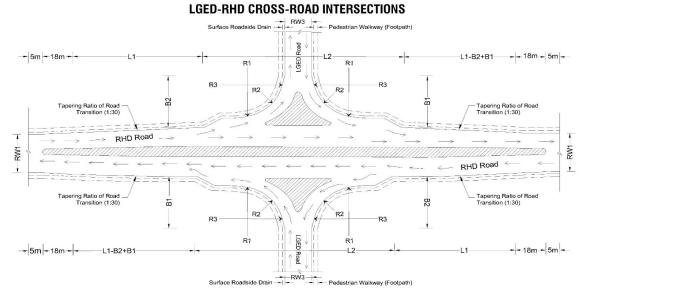

বাংলাদেশ গেজেট ,


, অতিরিক্ত,

আগস্ট

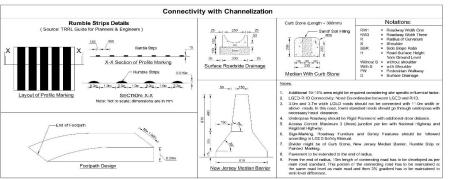
Ğ

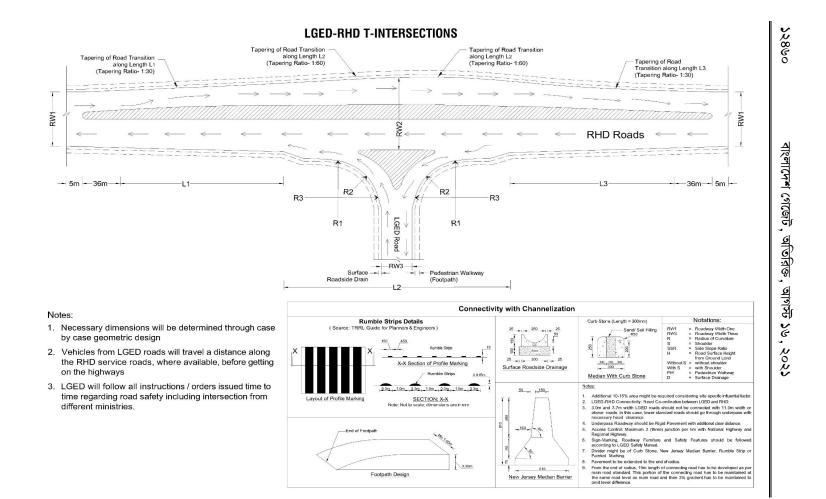

, 2022

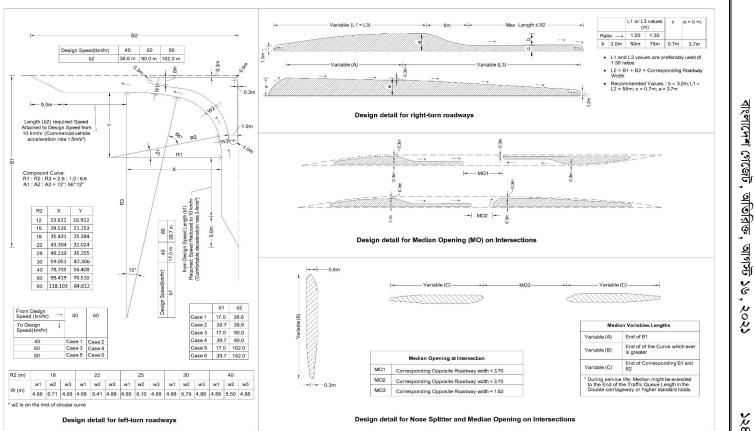


Connectivity with Channelization Rumble Strips Details (Source: TRRL Guide for Planners & Engin Cross Intersection in Hat-Bazar Areas Additional 10-15% area might be required considering site specific influential factor. Approximate Area (m²) Needed in Ground Level with Intersection Influence Area (5m on each leg) Roadway Data (m) ype 150 490 3.0m and 3.7m width LGED roads should not be connected with 11.0m width a bove roads. In this case, lower standard roads should go through underpass with necessary head clearance. Rumble Strips RW1 RW2 RW3 R2 L2 B1 B2 S Ratio H1 H2 H3 H4 H5 without with S PW D H1 H2 H3 H4 H5 _ tderpass Roadway should be Rigid Pavement with addition X-X Section of Profile Marking 6.1 9.8 5.5 18 139 51 83 1.85 1.2 1 2 3 4 5 4212 5371 1002 158 6601 7805 8984 10138 11267 3 13 - Rumble Strips aisaroce. Access Control: Maximum 3 (three) junction per km w Highway and Regional Highway. Sign-Marking, Roadway Furniture and Safety Features followed according to LGED Safety Manual. 6.7 10.4 5.5 18 139 51 83 1.85 1:2 1 2 3 4 5 4301 5461 1002 158 6690 7894 9073 10227 11356 14 1030 10n 1030 10n 120 10n 120 7.3 11.0 5.5 18 139 51 83 1.85 1:2 1 2 3 4 5 4391 5551 1002 158 6780 7984 9163 10317 11446 15 SECTION: X-X should b Layout of Profile Marking Note: Not to scale: dime 16 11.8 15.5 5.5 22 204 57 142 1.85 1.2 1 2 3 4 5 7681 9701 1746 274 11861 13996 16106 18191 20250 Divider might be of Curb Stone, New Jersey Median Barrier, Rumble Strip or Painted Marking. -End of Epotoath 6.1 9.8 6.1 18 140 51 83 1.85 1.2 1 2 3 4 5 4321 5480 1002 158 6710 7914 9093 10247 11376 17 Pavement to be extended to the end of radius Pavement to be extended to the end of radius. From the end of radius. Tom length of connecting road has to be developed as per main road standard. This portion of the connecting road has to be maintained at the same road level as main road and then 3% gradient has to be maintained to omil kevel difference. COL 6.7 10.4 6.1 18 140 51 83 1.85 1.2 1 2 3 4 5 4411 5570 1002 158 6800 8004 9183 10337 11465 18 19 7.3 11.0 6.1 18 140 51 83 1.85 1.2 1 2 3 4 5 4501 5660 1002 158 6890 8094 9273 10427 11555 0.30m 50 . . 150 20 11.8 15.5 6.1 22 153 57 91 1.85 1.2 1 2 3 4 5 5870 7130 1088 171 8467 9780 11067 12330 13567 Footpath Design Notations: **TT** NUCLEUTIS. RW1 = Roadway Width Three RW3 = Roadway Width Three R = Roadway Width Three S = Strouter SR = Site Slope Rain Without S = Nood Surface Meight H = Road Surface Meight Without S = With Schoulder With S = With Schoulder PW = Podestrian Walkay D = Surface Drainage 6.7 10.4 6.7 18 141 51 83 1.85 1.2 1 2 3 4 5 4520 5680 1002 158 6939 8113 9292 10464 11575 7.3 11.0 6.1 18 140 51 83 1.85 1.2 1 2 3 4 5 4501 5660 1002 158 6890 8014 9292 10464 11575 7.3 11.0 6.1 18 140 51 83 1.85 1.2 1 2 3 4 5 4501 5660 1002 158 6890 8049 9273 10427 1555 21 22 Curb Stone Sand/ Soll Filling 180 - 4 25 +11+ 250 +11+ 23 11.8 15.5 6.7 22 205 57 142 1.85 1.2 1 2 3 4 5 8048 10068 1746 274 12228 14363 16473 18558 20617 25 3 3 1 1 50 24 7.3 11.0 7.3 18 141 51 83 1.85 1.2 1 2 3 4 5 4720 5880 102 158 7109 8313 9492 10646 11775 8 18 25 11.8 15.5 7.3 22 206 57 142 1.85 1.2 1 2 3 4 5 8231 10252 1746 274 12412 14547 16657 18741 20801 25 - ||- 300 - ||- 25 Surface Roadside Drainage 610 26 11.8 15.5 11.8 25 243 84 148 1.85 1.2 1 2 3 4 5 1083 12927 181 284 1518 1734 1955 2174 2382 Median With Curb Stone New Jersey Median Barrie

S

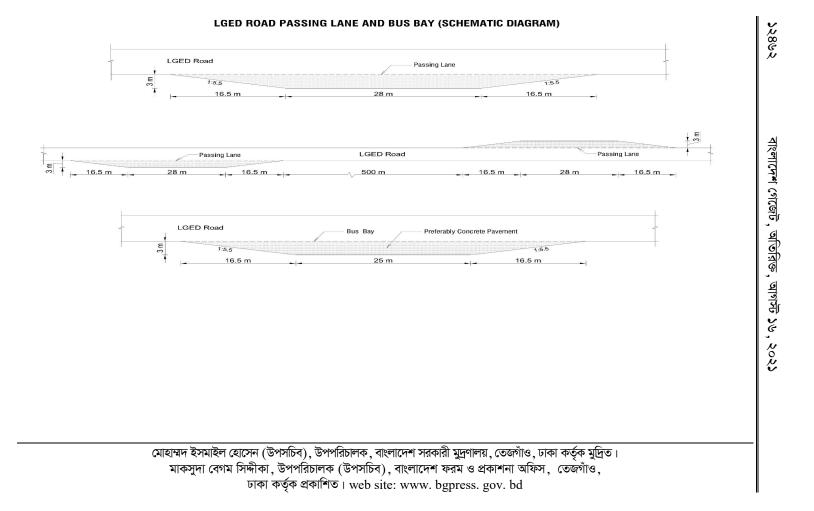



Connectivity with Channelization Rumble Strips Details T-Intersection in Hat-Bazar Areas Connectivity Type Additional 10-15% area might be required considering site specific influential factor. Roadway Data (m) Approximate Area (m²) Needed in Ground Level with Intersection Influence Area (5m on each leg) 152 490 2 3.0m and 3.7m width LGED roads should not be connected with 11.0m width or above roads. In this case, lower standard roads should go Rumble Strips with RW1 RW2 RW3 R2 L2 B1 B2 S Ratio H1 H2 H3 H4 H5 without PW D H1 H2 H3 H4 H5 through undergass with necessary head, clearance. X-X Section of Profile Marking 3. Underpass Roadway should be Rigid Pavement with add distance. 13 6.1 9.8 5.5 18 139 51 83 1.85 1:2 1 2 3 4 5 3001 3798 689 108 4648 5485 6310 7123 7889 Rumble Strips 0.015m assance. Access Control: Maximum 3 (three) junction per km wi Highway and Regional Highway. Sign-Marking, Roadway Furriture and Safety Features followed according to LGED Safety Manual. 4. 14 6.7 10.4 5.5 18 139 51 83 1.85 1:2 1 2 3 4 5 2651 3448 689 108 4298 5136 5961 6773 7540 230, 10m, 030, 10m, 030, 10m, 030 15 7.3 11.0 5.5 18 139 51 83 1.85 1:2 1 2 3 4 5 2741 3538 689 108 6863 7629 5 4388 5225 6050 SECTION: X-X Layout of Profile Marking Note: Not to scale; dimensions are in mr 7691 9016 10329 11629 12866 6 Divider might be of Curb Stone, New Jersey Median Barrier, Rumble Strip or Painted Marking. 16 11.8 15.5 5.5 22 204 57 142 1.85 1:2 1 2 3 4 5 5104 6353 1079 169 End of Engloy Alle 1 Con 17 6.1 9.8 6.1 18 140 51 83 1.85 1.2 1 2 3 4 5 2618 3416 690 109 4267 5106 5932 6746 7514 Pavement to be extended to the end of radius Pavement to be extended to the end of radius. From the end of radius, 15m length of connecting road has to be developed as per main road standard. This portion of the connecting road has to be maintained at the same road level as main road and then 3% gradient has to be maintained to omit level difference. 18 6.7 10.4 6.1 18 140 51 83 1.85 1.2 1 2 3 4 5 2708 3506 690 109 4357 5196 6022 6835 7603 7.3 11.0 6.1 18 140 51 83 1.85 1.2 1 2 3 4 5 2798 3596 690 109 4447 5286 6112 19 6925 7693 0.300 50 1 150 20 11.8 15.5 6.1 22 153 57 91 1.85 1.2 1 2 3 4 5 3899 4769 751 118 5697 6612 7515 8405 9231 Footpath Design Notations: RW1 = Roacoway Wath Oree RW3 = Roacoway Wath Oree R = Roacoway Wath Oree S = Sinculice SSR = Sinculice SSR = Sinculice Without S = Roace Surface Height Without S = with Structure Without S = with Structure PW = Podestrian Wathway D = Surface Drainage 21 6.7 10.4 6.7 18 141 51 83 1.85 1.2 1 2 3 4 5 2764 3564 691 109 4416 5256 6083 6898 7667 22 7.3 11.0 6.1 18 140 51 83 1.85 1.2 1 2 3 4 5 2798 3596 690 109 4447 5286 6112 6925 7693 Curb Stone (Length = 300mm) Sandr Soll Hilling <u>R50</u> 180 - 9 25 23 11.8 15.5 6.7 22 205 57 142 1.85 1.2 1 2 3 4 5 5295 5546 1081 170 7886 9214 10529 11832 13071 18 25 11.8 15.5 7.3 22 206 57 142 1.85 1:2 1 2 3 4 5 5390 6642 1082 107 7984 9313 10629 11933 13173 610 Surface Roadside Drainage 26 11.8 15.5 11.8 25 243 84 148 1.85 1:2 1 2 3 4 5 6910 8308 1208 189 9807 11293 12767 14228 15612 Median With Curb Stone New Jersey Median Barrie



Notes:

- 1. Necessary dimensions will be determined through case by case geometric design
- Vehicles from LGED roads will travel a distance along the RHD service roads, where available, before getting on the highways
- LGED will follow all instructions / orders issued time to time regarding road safety including intersection from different ministries.



INTERSECTION DETAIL DESIGN

ৎন৪৯৫

